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A CHARACTERISTIC-LIKE METHOD FOR THERMALLY 
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SUMMARY 
Finitedifference-like discretizations are developed for the time-dependent Navier-Stokes equations and the 
thermal energy equation on Delaunay triangulations of the flow domain. The flow is assumed to be thermally 
expandable; that is, the density varies only with temperahrre. A characteristic-like (CL) method is used to 
discretize the temporal and convective terms. The dual variable method reduces the size of the discrete system by a 
factor of five. 
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1. INTRODUCTION 

The finite volume or covolume method for generating finite difference equations was studied in 
Reference 1 for the heat equation and in References 2-8 for the incompressible Navier-Stokes 
equations. In References 9 and 10 the authors combined and extended these approaches to discretize 
a thermally expandable two-phase flow model. See Reference 1 1 for a current review of the literature on 
covolume methods in computational fluid dynamics. In this paper we consider thermally expandable 
flow with conduction and introduce a new covolume approach, based on the idea of characteristics, for 
the discretization of the convection term of the energy and momentum equations. 

The equation system that we consider consists of the continuity equation 

the momentum equation 

the thermal energy equation+ 

aP -+ v . @q) = 0,  
at 

and a thermally expandable29 equation ofstate, e.g. 

Rmp* 
P ( T )  = - T '  
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Figure 1. Delaunay and Voronoi tessellations 

where p is the density, q = (ql ,  q2) is the velocity, p is the pressure, T is the temperature, f is the body 
force, Q is the heat source, p is the viscosity, cp is the specific heat, k is the thermal conductivity, R is the 
gas constant, rn is the molecular weight, p* is the constant system pressure and t is the time. 

[The approach discussed here could just as easily be applied to a system in which the energy equation 
is given in terms of fluid enthalpy as 

As studied in References 10 and 12, the state equation (4) is replaced by 

P = P(H.P*) (44  
and involves interpolation of tabulated data.] 

We assume that ( 1 X 4 )  hold in a flow domain R whose boundary iKl is polygonal and which has been 
decomposed into triangular flow cells. On each segment of the boundary Xl we assume that either a 
temperature is given or the adiabatic condition holds. The fluid boundary conditions are that either the 
velocity q is given or the pressure p and tangential component of q are given. 

A geometric construction which has proven use l l  for generating finite element and finite volume 
discretizations of planar or solid regions into well-proportioned triangular or tetrahedral simplices is the 
so-called Delaunay triangulation and its dual the Voronoi tessellation. What makes the Delaunay 
triangulation popular is that (i) there are very efficient algorithms for computing and (ii) it 
produces triangles that are as close to equilateral as pos~ible'~ for a given set of points. See Figure 1 for 
an example of Delaunay triangulation and the associated Voronoi tessellation. 

One of the primary advantages of basing the discretization of boundry value problems on 
Delaunay/Voronoi constructions is the ability to easily define dual control volume partitions that can 
be locally graded or refined'6 and which are mutually orthogonal. Local grading permits efficient 
resolution and control of spatial discretization errors, while orthogonal control volumes produce small 
discrete systems (especially when combined with the dual variable method (DVM) of reducing system 
dimensionality) and improved treatment of flow boundary conditions. A main objective of References 
2-5 and 9 and the current work has been to link efficient control volume generation with 
complementary volume flow discretization and the DVM to produce an approach capable of delivering 
accurate approximations from computational models that are comparatively small in size. Finally, if (for 
example) the reverne Cuthill-McKee algorithm is used to order the triangles and vertices of the triangles 
in a Delaunay triangulation, the system representing the discrete form of equations (1 H3) will have a 
small bandwidth and profile. 

For a single space variable x the notion of chamcteristics or chamcteristic curves of a first-order 
hyperbolic partial differential system 

u, +All ,  = f, A E wxn, (5) 
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has been the basis for various numerical methods for approximating their solutions; see Reference 17 
for a discussion. The basic idea is to transform the system ( 5 )  into a system of the generic form 

vi T - = g i ,  du i =  1,2 , . . . ,n ,  dr 

each member of which holds along a chumcteristic curve x,(t) satisfying 

(7) hi = li(x, t .  ~ ( x ,  t ) ) ,  i = 1,2, . - . , n, 
where li is an eigenvalue of A with associated left eigenvector vi. Discretization of the total derivative in 
(7) at time level tm+l proceeds by integrating the characteristic equations (7) backwards to time level tm. 
This provides a location x,(rm) which is then used in the discretization of (6). The use of characteristics in 
the numerical solution of scalar hyperbolic equations is not new; see References 7, 17 and 18 and 
references cited therein. However, in Sections 2 and 3 we use this same general approach and the fact 
that in the covolume method the vector equation (2) is replaced by a scalar equation to discretize only 
certain terms in the entire flow model (1H4). 

2. FINITE VOLUME DISCRETIZATION OF ENERGY EQUATION 

MacNeal' developed finite difference equations for the discretization of the heat conduction equation on 
triangular grids. The temperature unknowns are associated with triangle circumcentres. The authors 
built upon this work in References 2, 9 and 10 and investigated several approaches to handling the 
discretization of the convection terms in (2) and (3). These finite volume discretizations included 
centred difference and donor-cell-type approximations. In this section we present a method for the 
treatment of the hyperbolic part of (3) that is related to the backward characteristic technique discussed 
in Section 1. Since there are two space variables, the analogue of the characteristic curve (7) is the 
chamcteristic surface S given implicitly by the equation &, y, t) = 0, where 

a4 -+ v * (94) = 0. 
at 

For numerical purposes S is not as useful as the so-called bichamcteristic curves r(r) lying on S. They 
are defined as solutions of the differential equation dr/dr = q. In view of the connection with the 
underlying notion of characteristics, we say that the method is 'characteristic-like' (CL) and refer to it as 
the CL method. 

Note that r(r) can be interpreted as a fluid particle path or equivalently as the definition of the 
Lagrange co-ordinates of a particle. However, we do not regard the CL method as a Lagrangian 
'particle-tracking' scheme, since the fimdamental quantities determined by the method are associated 
with a spatially fixed (i.e. Eulerian) grid. 

Consider the path r, = (x(t), fir)) followed by a fluid particle through the circumcentre (xu, yo) of 
triangle 6. Then q = (x, y) is the velocity of the particle and we note that the total derivative* of the 
tempera- T(x, y, t) along the path r, is 

dT aT -=VT.q+-. df at 

The usc of total or material derivatives in covolume discretizations of the vorticity transpor( equation was su ested, though not 
pursued, by Nicolaides? Classical finite diffemce schemes utilizing characteristics go back to Courant et ol.l%~ finite clement 
schemes see c.g. References 18 and 20. 
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Figure 2. Triangle (I 

Hence, recalling that ap/af = -V (pq), we have fiom (8) that 

a@T) = c - + cpv * (pqT). 
p at 

This can be used to rewrite (3) as 
dT 

p d t  
PC - - V * k V T = Q  

(9) 

along the path r,. 
We assign a local Cartesian co-ordinate system (nR sp) to the midpoint P of each side of the triangular 

grid. The triangle u in Figure 2 has area A, and boundary a0. The unit normal on a0 is N. The length of 
side I is hf and hi is the distance between triangle circumcentres 0 and T~ on the perpendicular bisector 
through side I. Note that N - nf = f l  as nl is an outward or inward n o d  to side I. For each of the 
NTtriangles in the triangulation the density pm pressure P, and tempera- T, are associated 
with the circumcentre of triangle u. For each of the Ns triangle sides the midside normal velocity 
q - n, is associated with the midpoint of side I. 

Recall that the derivative term dT/Q in (10) is the time derivative along the curve ro = (x(t), y(f)). Let 
fm+, = t,,, + At,,, be the current value of time t. Assuming that the velocity q(x, y, t,,,), density p(x, y, 1,) 
and temperature T(x, y, zm) are known, the time derivative in (1 0) at the circumcentre of triangle u is 
approximated by (see Figure 3) 

dT, T ( ~ u , ~ u , t m + l ) - T ( r ( t r n ) , y ( t r n ) , t m )  

dt 4 
The conduction term in (1 0) is approximated at u by area averaging, 

(V RVT), a J V (AVT) &/A,, 
D 
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Figure 3. Particle curve through circumcentre of triangle u 

where by the divergence theorem 

Finally the source term is approximated by Quy the value at the circumcentre.* Collecting (1 1 )-( 13), the 
discretization of (10) at the circumcentre of triangle 0 is taken to be 

The unknowns [ T,,, T., , TTQ , TT, ) in (1 4) are associated with time level tm+, . 

To determine the co-ordinates (x(t,,,), fit,)), we integrate 
The problem now reduces to finding where the fluid particle (currently at (xu, yu)) was at time t = t,. 

dt' dt 

backwards from (xo, y,,) along r,,. This yields 

-Atrnq(x(tm), fit,), t m ) .  (15) 

Rearranging this relation, we determine x(fm) and At,,,) as the solution of the non-linear simultaneous 
equations 

Equation (16) is solved for each circumcentre of the mesh, e.g. using Newton's method. This allows us 
to evaluate T(x(t,,,), fir,), r,) in (14). Substituting the resulting approximation into (14) yields a system 
of equations 

K T = s  (17) 

to be solved at each time step. In general the matrix K has four non-zero entries per row but is diagonal 
for pure convection problems. 

For irregular tessellations, where the circumcentre may be outside the triangle. we have used the value at the centroid. 
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In some problems we have found little difference in the results if q(x(tm), fit,,,), tm) in (1 5) is replaced 
by qu, similarly to the finite element scheme in Reference 18. In other problems this linearization does 
degrade the solution. A third choice we have investigated is to average these two choices; this 
corresponds to applying the trapezoidal rule to the integral in (15). 

In the Appendix we present a convergence analysis for the CL method applied to the one-dimensional 
model convection equation 

a4 434 - + - = o ,  
at ax 

subject to the pure initial condition +(x, 0) = +,,(x), -03 < x < 03. We prove that if 0 is the computed 
approximation o f 4  and if linear interpolation is used to reconstruct @(x, t )  from its mesh point values, 
then for any mesh ratio At/h ,  where At is the time step and h is the spatial mesh gauge, the computed 
solution is always bounded by the initial data; in other words, the method is unconditionally stable. 
Regarding the convergence of the method, we deduce the following. 

1. Under the usual assumption that the mesh ratio is constant, the method is first-order in h in the 
sense that the hscretization error 0 ( x ,  t )  - #(x, t )  = q h ) .  

2. If At is fixed (at any value), then @(x, t )  - 4(x ,  r )  = q h ’ ) ,  i.e. the method is second-order in h. 
3. The discretization error consists only of interpolation errors, i.e. the numerical integration in time 

is exact. Since these errors accumulate as At -+ 0, decreasing the time step while keeping h fixed 
will generally produce a less accurate numerical solution. 

Returning now to the general method, we note that we can exploit the form of (4) to decouple (17) 
from the fluid dynamics equations at each time step. For a given time step the new time temperatures are 
approximated by solving (17), the new time densities are calculated from (4) and then the new time 
velocities and pressures are obtained by discretizing (1) and (2) using the new time densities. This 
process is repeated for each time step. 

Our convergence criterion for Newton’s method applied to (1 6) is that the Euclidean norm of the 
residual be less than 1 per cent of the Euclidean norm of the position vector (x(tm), fit,,,)). Experience to 
date shows that Newton’s method converges in one or two steps, else it cycles, the latter occurring 
infrequently. The circumcentre (xm, yu) is taken as the initial guess and a maximum of eight Newton 
steps are allowed. Figures 4 and 5 illustrate the results of the Newton iteration for actual data on a rather 
coarse grid. All velocity vectors are 1 /20th of their actual length and the trajectory of a particle in the 
given direction over 1 10 s is indicated by broken lines. Even in the cyclic case the approximation to 
(x(tm), fit,,,)) is adequate considering the relative size of the velocity vector q. 

Figure 4. Newton iterates for energy equation; converged 
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CYCLES 
5s3 
6 8 4  
7.3 
0 = 4  

Figure 5. Newton iterates for energy equation: cyclic 

The temperatures found in (17) are approximations at the circumcentres of the triangles. However, the 
temperature at an arbitrary point in the domain is needed, for example, when plotting isotherms or when 
evaluating T(x(f,), fir,,,), t,) in (14). We use constant or linear interpolation within each triangle for this 
purpose. Unless stated otherwise, linear interpolation is used and this requires approximating the 
temperatures at the vertices of the triangulation. The temperature for an interior vertex I is determined by 
the formula 

where is the temperature at the circumcentre of the ith triangle sharing vertex I and di is the distance 
h m  this circumcentre to vertex I; see Figure 6. Along the boundary, the vertex temperatures are 
determined by interpolation to boundary data. 

Finally, we note that a Newton approximation of the point (~( f , , , ) ,  At,,,)) may fall outside the flow 
domain. In such a case the time step is adjusted so that the iterate falls on a boundary segment. To be 
more specific, with reference to Figure 7, suppose that R1 is the approximation to (x(fm), fit,,,)) that is 
outside Q. Then R2 = (x*, y* )  on Kl and time rC are determined by 

R2 = V2 + P(V1 - V,) = P, - aq,, (19) 

Figure 6. Temperature at interior vertex 
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"2 

Figure 7. Particle path outside R 

Note that (19) reduces to two linear equations in the two unknown parameters a and 8. The 
approximation to the total derivative in (1 1) is then replaced by 

3. COVOLUME DISCRETIZATION OF NAVIER-STOKES EQUATIONS 

Referring again to Figure 2, the semidiscrete form of the continuity equation (1) is obtained by 
integrating (1) over each triangle, using the divergence theorem and making the following approxima- 
tions: 

Combining these discrete continuity equations for each of the NT triangles, we obtain the linear 
system 

AD,+ = S, (23) 

where $j = (pq)j * nj is the mass velocity normal to the fi triangle side, the Ns x NS matrix 
D1 = diag(h,), where Ns is the number of triangle sides in the grid, and the NT x Ns matrix A is 
given by 

1 
- 1 

if nj is an outward normal on sidej of triangle i, 
if nj is an inward normal on side j of triangle i, a .  . = 

I J  1 0 if nj is not associated with triangle i. 

The NT x 1 vector s contains boundary data and an approximation of -Ai dpi/dt corresponding to 
triangle i. Since the energy equation has been decoupled and solved at time tm+ 1, new time densities are 
known from (4) and dp/dt is approximated using a backward difference approximation. 
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F i g w  8. Discretization of momentum equation 

We discretize the vector momentum equation (2) at midside P by first projecting it into np. This is the 
same approach as was taken in References 2-5 and 8-10. We observe that 

where w = -aq,/@ + aq2/aX is the scalar vorticity. Also, the pressure gradient term 

??J vp * Qp = -, 
h P  

where a / h p  and a/&, denote the directional derivatives in the directions nP and sp Furthermore, with 
regard to the convection term we have 

where a/@ denotes differentiation in the direction of q. 
It follows that the projected momentum equation can be written as 

where p, q and fare evaluated at P. 
Referring to Figure 8, we approximate the pressure gradient term in (26) by 
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The viscous term (24) is discretized using approximations to the scalar vorticity at vertices of 
triangles and the divergence at circumcentres of triangles. At the midside node P 

where the scalar vorticity at V, is area averaged over the Voronoi polygon R, containing V,.4psss-’0 For 
example, recall that Jn, o da = Jan q T ds, where the vector T is a unit tangent vector to iKzq 
directed in the counterhckwise sehe  along XIv,. Note that since T = (T . ni)ni on side i, it is 
reasonable to approximate ovl by 

6 
o v l  ( i= c 1 (9 * ni)(T * ~ i ) ~ ~ ) / ~ ( ~ ~ l  ). (29) 

The divergence (V q),, is also approximated by area averaging, i.e. the right side of (22) is divided by 
A, and @q)I is replaced by Q. 

It should be remarked that for thermally expandable flows we have chosen noxmal components of 
mass velocities, 4, = (pdP - np, at midside nodes as the primitive variables. Thus in (29) the normal 
velocity components are computed as 

9 * nP = 4P/PP9 (30) 
where pp is the density at the midside node P and is determined by linear interpolation of the 
circumcentre densities p, and pr of the two triangles sharing side P. 

So far the discretizations are the same as presented in References 4 , 5 , 9  and 10. However, we now 
consider a different approach to handling the convective term in (26). Since (26) is a scalar momentum 
equation, we proceed in a manner similar to Section 2 for the energy equation. Let rp = (x(t), At)) be the 
path followed by a fluid particle that is at mesh point P= (xR yp) at time (Figure 9). Then 
drp/dt=(x, y)=q is the velocity of the particle along the path rp. Further, with u = q * np, a scalar 
function of x, y and t ,  we have along the path rp 

all - vu * q + -. 
dt at 
du _-  

Hence, recalling that ap/at = -V - @q), we have from (31) that the projected momentum equation (26) 
can be rewritten as 

Figure 9. Particle curve through midside mesh point (xp, yp) 
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along the path rp. That is, the non-viscous terms on the left side of (26) are replaced by the single 
temporal term p du/df. The other terms in (32) have been discretized at time t,,,+] and p du/& is 
approximated by a backward difference, i.e. 

Here u(x(t,), fit,,,), t,,,) = q(x(t,,,), fit,,,), t,) - np is the component of velocity in the direction np at a 
point (x(t,,,), fit,,,)) on the curve rp through midside point P = (XP, yp). In the time interval [t,,,, t,,,+l] a 
particle of fluid follows rp from the point (x(tm), y(t,)) to (xp, yp). 

The problem now reduces to finding this point (x(t,,,),y(f,,,)) on the curve rp The procedure is 
identical with that described in Section 2 for the curve ra except that the circumcentre Q is replaced by a 
midside point €! We solve a non-linear system 

e.g. by using Newton’s method. This allows us to evaluate u(x(fm), fit,,,), f,,,) in (33). 
Combining (33), (27) and (28), we obtain our covolume approximation to (32) at mesh point €? 

Considering each such midside of the triangulation, the discrete momentum equation obtained is of the 
form 

Q$ = DylArp + b, (35) 

where the Ns x NS matrix Q contains the couplings associated with the viscous and temporal terms, 
b E RNs is the vector of body forces and/or boundary data and p E RNT is the vector of pressures 
associated with triangle circumcentres. The Ns x NT diagonal matrix D2 has hb for the row associated 
with midside P (cf (27)). Unlike other methods, the discrete momentum equation is linear; the non- 
linearity has been shifted to the individual systems (34) resulting from integrating backwards along the 
particle curves. 

If we multiply (35) by D2 and define U 3 Dl$,  then (23) and (35) combine to give the NS + NT system 

to be solved at each time step. 
The velocity vector q is approximated at the ith triangle midside as e. = u p i  + visi, where the n o d  

component ui is a primitive variable in the covolume method. However, vi must be reconstructed using 
only boundary data and the n o d  flows ui. lbo schemes have been presenteds6 which will reproduce 
constant flow fields, but neither will reproduce linear flow fields. In Reference 9 we presented two 
methods that reproduce constant and linear flow fields. For completeness we describe one of these 
methods here, though either is appropriate. Assume that the velocity q is linear and of the form 

. = A ( ; ) *  (37) 
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Figure 10. A triangle and three neighborn 

where the 2 x 3 matrix A=[al a2 a3]=[ag]. Refemng to Figure 10, we note that the velocity 
components for a given triangle I and its three neighbowing triangles are labelled 1-9. We define the 
2 x 3 matrix Ql and the 3 x 3 matrixXl by 

LYl Yz Y 3 1  

where qi is the velocity vector at point i. Similarly, we define Q2, Q3,  XZ and X3. Since the triangles have 
positive area, it follows that 4 - l  exists and from (37) we have 

A = QJ;' = Q2XF1 = Q3X<' (38) 

or 

Using (38) and (39), we obtain e.g. 

from which it follows that 

In (41) we have made use of the notation [XIg to denote the element in row i and columnj of matrix X. 
Repeating (40) and (41) for triangles 2 and 3, we obtain nine equations in nine unknowns. However, it 
can be shown that this system is singular. Thus we add to the system two equations which state that q at 
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the centroid C of triangle I belongs to the same linear flow field. This can be expressed in terms of 
triangle 1 as (for example) 

However, the point C has barycentric co-ordinates (i , f , $) and q being linear implies 

Substituting (43) into (42) yields two scalar equations in the unknowns v l ,  q, 213, v4 and v7. These two 
equations combined with the earlier nine equations produce an 11 x 9 system which we have found in 
all our computations to have full rank. We use the LINPACK subroutine SQRSL to obtain the unique 
least squares solution of this system. 

If one of the triangles, say triangle 2, does not exist and link 4 crosses the boundary of the flow region 
a, then v4 is assumed given as boundary data. The variables us and v6 are non-existent and the system to 
be solved is now 8 x 6. 

In general the above procedure is repeated twice for each link, since there are two triangles sharing 
each interior link of the grid. This generates two approximations for the tangential flow on such a link 
which are then averaged. 

Next we present a variable reduction technique which replaces the NT +Ns system (36) by an 
equivalent system of dimension Ns - NT. This network method (the dual variable method) was 
presented in References 2-5,9 and 10 and is an extension of earlier work12*13*21-29*33 to triangular grids. 

In network terminolo&o the sides (links) and vertices (nodes) of the Voronoi polygons form a 
directed network r, while those of the triangles constitute its dual r*. Each link of r carries aflow that 
is an approximation of the normal mass flux rate across a triangle's side, while each node of r carries a 
state that is an approximation of the pressure at the circumcentre of a triangle. The matrix A in (23) is the 
incidence matrix of the network r, equations (23) are its node laws and equations (35) constitute the link 
chamcteristics. 

Once the above identifications have been made, the dual variable method is applicable. The dual 
variables are states on the nodes of r*, i.e. the vertices of the triangles. If the flow region is simply 
connected, then the boundaries of the Voronoi polygons form a basis of elementary cycles for r and an 
exact representation of the most general flows satisfying the node laws can be given in terms of the dual 
variables. Moreover, a transformation of the link characteristics then produces a closed system that 
determines the dual variables. 

The specific application of these ideas to (36) proceeds as follows. The dimension of the elementary 
cycle basis is known to be Ns - NT and each cycle gives a simple prescription for the determination of a 
linearly independent vector in kerA. Thus dim(ked) = Ns - NT and, using the elementary cycles of r, 
it is straightforward4 to construct an Ns x (Ns - NT) fundamental matrix C whose columns form a 
basis for ked .  If U=D1& and Uo=D1&o, where 40 is any particular solution of (23), then 
U - Uo E kerA. Hence U - Uo = Cy for some vector of dual variables, y = (yl, - .  . , yNs-NT) , 
and so 

T 



744 C. A. HALL AND T. A. PORSCHING 

Equation (44) expresses the Ns unknown mass flux rates 4j in terms of Ns - NT dual variables. If we 
substitute (44) into (36) and recall that U= D14,  then the second block row is trivially satisfied and the 
first block row becomes 

DzQDr'Cy +ATp = Dzb - DzQD,'Uo. 

Multiplication by CT eliminates the pressures (since AC = 0), resulting in a system of dimension 
Ns - NT, the dual variable system 

CT(D,QD;')Cy = CT(D2b - D2QD;'Uo). (45) 

This is solved at each time step, the velocities are recovered fiom (44) and (if desired) the pressures are 
computed fiom the triangular system ATp = c obtained from (36). 

Based on the estimates given in Reference 3 1, for a fine grid NT % f Ns.  Hence the primitive system is 
of dimension N, + NT x ZN,, while the dual variable system is of dimension Ns - NT x fNs. We 
conclude that the dual variable system is a factor offive smaller than the primitive system. See 
References 4 and 5 for more details on the dual variable method for triangular grids. 

The normal velocity components ui that are determined by the covolume method and the tangential 
velocity components vi that are subsequently determined by a reconstruction procedure such as the one 
outlined above provide approximations qi = uini + qsi for the velocity at the midpoints of each of the 
triangle sides in the grid. However, the velocity q at an arbitrary point within the flow domain is 
needed, for example, when plotting the vector field or when evaluating q(x(tm), y(tm), tm) in (16) or 
(31). We use linear interpolation within each triangle of the mesh. This requires approximating the 
velocity q at the vertices of the triangulation. 

Consider the triangle vertex I in Figure 11 and the associated Voronoi polygon. For each point Ai we 
have a velocity qi. We choose three of these points, e.g. Al, A3 and AS, such that the triangle AlA3As 
contains vertex I and we define 

91 alql + '3q3 + "5959 
where {al, a3, as} are the barycentric co-ordinates of point I in the triangle AlA3AS. Note that the 
determination of the triple of indices { 1, 3, 5 )  and the barycentric co-ordinates of vertex I is a one-time 
computation done as a preprocessor step outside the time loop. 

Figure 1 1. Interpolation of vertex velocities 
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4. NUMERICAL EXAMPLES 

4. I .  Rotating exponential form 

Consider a square domain (-1, 1) x (-1, 1) in which an incompressible fluid is rotating with 
velocity q = (y, - x )  around the origin. There is no heat some: Q = 0-0. The conductivity k = 0.0, the 
density p = 1.0 and the specific heat cp = 1-0. The initial temperature is 

10, otherwise, 

where xo = (0.5, 0.0). Equations (1) and (2) are not needed, since the velocity field is assumed known. 
The initial temperature distribution is thus rotated about the origin as time advances. For this example 
the trapezoidal rule approximation to the integral in (1 5 )  was used. 

Figure 12 illustrates the Delaunay tessellation used, which contains NT = 1942 triangles. The time 
step AT = x / 6  and piecewise constant interpolation was used in (1 4). Figure 13 illustrates the form at 
t = 0, n/2, 7~ and 3x12. 

4.2. Natuml convection in a square cavity 

This is a typical benchmark problem involving thermally driven f l a ~ s . ' ~ , ~ ~  Consider a square cavity 
of side D. The top and bottom are insulated, while the two sides are differentially heated, with Th on the 
left and Tc on the right. The walls of the cavity are assumed to be no-slip (i.e. the tangential and normal 
components of the velocity vanish on the walls). The solution to this problem depends on the value of 
the Rayleigh number 

where P = (- 1 /p ) (ap/aT)  is the coefficient of volumetric expansion, g is the gravitational constant and 
a=k/pcp is the thermal dihivity. It is well known that the problem becomes increasingly more 
difficult to solve numerically as the Rayleigh number increases. The body force term in (2) was taken to 
be f = (0, pg)T, where g is the gravitational constant. 

Figure 12. D e l a u ~ ~  and Voronoi teasellations for rotating exponential form 
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Figure 13. Rotating exponential form for t=O,  x / 2 ,  n and 3n/2 

The triangulation in Figure 14 was used with D = 0.087 17 ft. The values of the parameters in (1)-(4) 
were chosen* corresponding to air and the temperature drop was chosen so that Ru = lo4. The grid 
contains NT= 730 triangles and Ns= 1059 (interior) triangle sides. The fluid dynamics problem 
involves a primitive system with 1789 unknowns, while the dual variable system has 329 unknowns. 
Note that Ns + NT = 1789 and NS - NT = 329. 

Figure 15 presents the isotherms at steady state. These results correspond to 600 steps of the CL 
method with a time step of 0.01 s. Equation (16) was used, as was linear interpolation within triangles. 

The heat transfer at the hot wall is defined by the local Nusselt number 

Figure 14. Tessellations for natural convection in a square cavity 

* p=O.O8634 Ib W3, g=32.1739 ft s-', /3=0.218 x lo-' OF-', p =  1.5664 x lo-' Ib s-' W', cp=0.243 BTU Ib-' O F - ' ,  

k= 5.3610 x BTU ft-' S-' OF-'. Th= 10.0 "F and T,=O.O "F. 
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0 0.2 0 .4  0 . 6  0 . 8  

Figure 15. Isotherms for natural convection, Ru = lo' 

where the reference length L = D and the reference temperature T, = (Th - Tc)/2. The local mesh 
refinement along the hot wall in Figure 14 is to facilitate the calculation of Nu. For this problem we 
found that the maximum and minimum values of Nu are 3-55 and 0-59. These compare well, for 
example, with the values of 3-51 and 0.59 determined by de Vahl Davies and Long in Reference 32. 

4.3. Flow around a heated rod 

To illustrate the use of the CL method in the simulation of homogeneous two-phase flow, we consider 
a heated rod of radius 0-1 ft centred one-third of the distance down a 1 ft by 1.5 ft channel; see also 
Reference 29. Figure 1 contains the Delaunay tessellation on which the semidiscretizations were made. 
For this problem NT = 586 and Ns = 861. Hence the size of the primitive system is 1447, while that of 
the dual variable system is 275. The problem utilizes the generalized forms (3a) and (4a) of the energy 
and state equations. 

The transient was initiated from a steady state in which slightly subcooled water (system pressure 
p* = lo00 lbf in-2 and enthalpy H =  535 BTU lb-I) enters the channel on the left with horizontal 
mass velocity pql(O, y)= 12-5 Ib fiP2 s-'. The downstream boundary condition is p(1-5, y) = 
1000 lbf in-2 and a freestream condition is simulated at y = O  and 1.0: pql(x, 0) = 
pql(x, 1-0) = 12.5 lb fV2 s-l and pq2(x, O)=pq2(x, 1.0) =O.O. Heat is added to the 24 cells sur- 
rounding the rod at a rate Q= 1050 BTU fY3 s-l. 

The quality x of the mixture is defined by 

where H&*) and H&*) are the enthalpies of saturated liquid and vapour respectively. Thus in our 
example x = 0.0 corresponds to no steam while x = 1.0 corresponds to a 'mixture' of 100 per cent 
steam. 

The CL method (equation (1 6)) was used to numericaliy solve this problem. A time step of 0- 125 s 
was used for 320 steps. Figures 16 and 17 show respectively some of the instantaneous quality contours 
and streamlines 40 s into the transient. At this time the maximum quality is 15.3 per cent. This high- 
quality mixture is in the region immediately behind the rod. 
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0 . 8 1  1 

Figure 16. Quality contours at 40 s 

Note that although the flow region contains a two-phase mixture at t = 40, the contours of Figure 17 
resemble those of laminar flow. This suggests that for the current choice of time step and grid the CL 
method is overly dissipative. Indeed, a von Neumann analysis of the model problem considered in the 
Appendix reveals that up to a factor of unit modulus the CL method amplification factors are identical in 
form with those of the explicit upwind method. (The interpolation weight o! in the CL method plays the 
role of the Courant number c in the explicit upwind method.) In view of this, the graphical results of 
Figure 17 should come as no surprise. 

As we have already noted, for a given spatial mesh the treatment of convection effects by the CL 
method is more accurate for larger time steps. Thus it appears advantageous to use a time step 
significantly greater than 0.125 in this example. Unfortunately, the presence of an impervious boundary 
(the surface of the rod) prevents this. To see why, recall that the basic idea of the CL method is to 
numerically integrate a total derivative representing the temporal and convection terms along an 
approximate particle path that terminates at a given grid point. Clearly, it is physically meaningless for 
this path to emanate fiom or pass through a solid. However, this is precisely what occurs in triangles 
immediately downstream of the rod unless the time step is sufficiently small, i.e. of the order of 0.125. 

1 
0 . 2  0 . 4  0 . 6  0 . 8  1 1.2 1 . 4  0 

Figure 17. Instantanmus streamlines at 40 s 
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Presumably, the accuracy of the numerical solution would improve by refining the spatial grid and, if 
necessary, adjusting the time step. 

5 .  CONCLUSIONS 

The numerical solution of thermally expandable flows on triangular grids using a characteristic-like 
method was investigated. An approximate particle trajectory was determined and the temporal and 
convective terms were combined and integrated backwards in time along the trajectory to produce finite 
difference approximations. 

Delaunay and Voronoi tessellations were used to generate dual grids that decompose the flow region 
into covolumes. The advantages of such decompositions are the ability to generate a grid for virtually 
arbitmy flow regions without resorting to costly mapping techniques, the ability to grade the grid to 
achieve local refinement and the availability of highly developed automatic mesh generators. 

The covolume discrete primitive system can be interpreted as node laws and link characteristics of a 
directed network defined by the Voronoi polygons associated with a triangular grid. The dual variable 
method was used to obtain an equivalent system that is less than one-fifth the size of the primitive 
system. In addition, this dual variable approach, unlike e.g. penalty methods, guarantees that mass is 
conserved identically. 

Numerical results were presented illustrating the flexibility of this approach. 
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APPENDIX: CONVERGENCE ANALYSIS OF THE CL METHOD FOR THE 
ONE-DIMENSIONAL MODEL CONVECTION EQUAnON 

To obtain some idea about the accuracy of the approximate solutions produced by the CL method, we 
consider its application to the initial value problem 

a$/at + qa4/ax = 0, t =. 0, 

4(XlO)  = 4o(x), 

where - 00 < x c 00, q is a (positive) constant and do is the initial data. 
If x = x(t) denotes the characteristic curve passing through (x, t) and satisfjlng dx/dt = q, then 

4(x(t), t) satisfies d4/dt=0. Thus, if (xo, to) is any other point on the characteristic, we have 
#(x, t) = d(x0, to). In particular, if we consider a grid of points (xi, t,,,), where xi = jh,  j = 0, f 1, - - . , 
and t,,, = mAt, m = 0,1, . . . , then 

where 6 = qAt. 
For this problem the CL method at time level t,,, consists of the following steps. 

1. Solve 
xi - x ,  

At 
-- - 9  

for the point x* = x, - qAt. 

(47) 
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2. Solve 
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for the approximation @(xi, t,); that is, 

Comparing (46) and (48), we conclude that the CL method is exact at t = tm if it is exact at t = tm- 
i.e. if @(x, tm-] )  = 4 ( x ,  fm-l) for all x. However, any practical implementation of the method requires 
that @(x, fm-l) be reconstructed from discrete data. This is usually done by applying an interpolation 
scheme based on values at the grid points xi. Therefore let us assume that @(x, tm- l )  is obtained by linear 
interpolation of the grid point values @(xi, tmA1). The use of linear (or other) interpolation introduces a 
discretization error that propagates forwards in time. To study the nature of this phenomenon, let &(x, t) 
denote the linear interpolant of &(x, t )  and define the interpolation error e(x, t) = 4dx, t )  - &(x, t). 
Furthermore, let E(t) = maxx le(x, t)l. 

Proposition 

Form = 1,2, .  . . we have 

PmoJ We give a proof by induction on m. By (46) we have 

4(xjg t l )  = $(xj - 6 ,  O),  

while by (48) 

@(xj, t l )  = @(xi - 6 , O )  = 4,(xj - 6 , O )  = 4(xj  - 6,O) + e(xj - 6,O) = +(xi, t l )  + e(x, - 6,  0). 

Therefore 

I@(xj$ t l )  - &(xi, tl)I = l+j - 6,O)l < E(O), 

which verifies (49) for m = 1. Now assume that (49) holds for ?m-l, m >, 2. Then we can write 

W j ,  tm-1) = tm-1)  + tm-11, 

where 
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i=O i=O 

This completes the induction. 

methods, 'unconditionally stable'. 
It is a simple consequence of the above argument that the CL method is, in the parlance of difference 

Corollary 1 

If &(x) is bounded on (--00, a), then for any choice of h and At we have 
7 I ' W j ,  2m)l G 7 I4O(xj)I* 

Pmof: It follows from (50) that 
I W j q  tm)l < 7 I W k r  tm-l)l* 

Therefore 
mi" IQ(xj* tm)l G m p  I W x k ,  L-1)I  

and the result follows by repeated application of this last inequality. 

As a second corollary we have the following convergence result. 

Corollary 2 

differentiable. Then there is a constant K that is independent of h and At such that 
Let t be a fixed time level such that t=mAt  and let the initial data 4o be twice continuously 

I@(x,, t )  - $(xp t)l G Kt(h2/At). (51) 

Proof: Since #(x, t )= C $ ~ ( X  - qt), the hypotheses imply that @+/a2 is continuous. Hence for 
linear interpolation we have E(t) < Kh', where K is a constant independent of h. Therefore (49) 
implies that 

m- 1 

i=O 
IO(x,, f) - 4(x j ,  t)1 = p ( x j ,  t,) - $(xi, tm)l G E(ti) < mKh2 = Kt(h2/At) .  

This establishes the corollary. 
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NT I 314 

NT I lSB2 

Figure 18. Delaunay and Voronoi tessellations for thermal wave 

The estimate (51) shows that if the grid is refined so that the mesh ratio At/h is constant, then the 
method is first-order in h. However, it also shows that if At is fixed (at any value), then we have a second- 
order method in h. This somewhat surprising result is due to the fact that for the model convection 
equation there is no error in the method due to time discretization-the error is introduced solely by the 
linear interpolation process. On the other hand, if we fix h and let At approach zero, the right side of (5 1) 
becomes unbounded, suggesting that in this case the accuracy of the approximate solution deteriorates. 
To illustrate this behaviour, we consider the following example. 

Convection of thermal wave in a unifonnfiwfield 

We consider a channel [O.O, 10.01 x E0.0, 1.01 with the Delaunay and Voronoi tessellations as 
illustrated in Figure 18. There are NT = 374 triangles in the coarse grid and NT = 1592 triangles in the 
fine grid. The velocity field is assumed to be uniform, q = (1 -0, 0-O)', and the channel walls 0 = 0 and 

be adiabatic he-slip. The conductivity k= 0.0, the density p = 1 .O and the specific heat 
is no heat source: Q = 0.0. Initially the temperature in the channel is T(x, y, 0) = 0.0 and 

T(0, JJ, t )  = 0.25 ~0s(nt /3 .0) .  

Under these conditions the problem becomes one-dimensional and has as its solution the travelling wave 

T ( x , ~ ,  t )  = 0.25 COS[Z(X - t ) /3*0] .  

Thus the analysis given above applies. Figure 19 presents the centreline h=0.5) temperatures at 
t=  12 s for the CL and donor cell9 methods for various choices of time step on the coarse tessellation. 
For At 2 10.0 the CL method using (1 6) is exact (to within machine accuracy). However, the accuracy 
of the CL solution degrades as At + 0 for a fixed tessellation. As mentioned above, this is due to the 
accumulation of interpolation errors over more and more time steps. On the other hand, in accordance 
with the convergence analysis, Figure 20 shows that a refinement of the spatial grid gives improved 
results in the CL method for the same time step At = 0.1. 
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